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Phase equilibria in the system MgO-MgF,-Si0,-H,0
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Abstract

Unit-cell parameters as functions of mole fraction fluoro-endmember have been deter-
mined for clinohumite, chondrodite, norbergite, brucite, and sellaite. In addition, the d spac-
ing for the (060) peak of talc was determined as a function of mole fraction fluoro-talc. Unit-
cell parameters for the phase intermediate sellaite are

a =10.123, b = 4.6861, c = 3.0780A when coexisting with periclase and
a = 10.097, b = 4.6812, ¢ = 3.0738A when coexisting with sellaite.

From these X-ray data the compositions of coexisting phases have been determined in
forty hydrothermal experiments that yielded information on eighteen different chemical
equilibria. These data, combined with phase equilibrium and calorimetric data from the liter-
ature, have been treated by the method of least squares to produce a thermodynamic model
for the system. The derived endmember Gibbs energies of formation from the components
MgO, MgF,, SiO,, H,0 at 1023 K and | bar are in cal mol™" AGSy = 15538, AG2, = §156.
AGRs = 44092, AGPy = 5333, AGRN = — 15721, AGRcn = —12031, AG2c, = 31161, AGPc, =
—41347, AGRc, = —58853, AGRir. = —8509, AGPy. = —2086, AGS, = —14249, AGS, = —7566.
Computed cquilibria based upon these Gibbs energies and related excess parameters com-
bined with entropies and heat capacities are in good agreement with data on natural assem-
blages.

Introduction Naturally-occurring equilibria that can be repre-
The system MgO-MgF,-Si0,-H,O is in many re- sented by the model have received little attention in

spects an ideal system for experimental study. High- the lite{ature: This is more probably due to the diffi-

purity starting materials are readily available. There ~Culty of obtaining fluorine analyses than to the scar-

are no oxidation-reduction problems. Phase equilib- €Ity of s:ultable bulk compositious. What information

rium and calorimetric data are abundant on impor- d0€s exist agrees well with the model.

tant subsystems. Synthesis experiments have been

carried out on the solid solution pi.ases (Van Valken-

burg, 1955, 1961; Crane and Ehlers, 1969). A basis The symbols used in this paper follow as closely as

for theoretical treatment of such systems has been practicable the usage recommended by McGlashan

given by Thompson (1967) and Muan (1967). (1970). Additional symbols are those in common use
This study combines new experimental data on in the geologic literature. A list of symbols and corre-

multiphase equilibria in the system with available sponding units is given in Table !. Table 2 lists the

data to form an overdetermined system of equations symbols and formula units used for the various

which describe experimentally-observed chemical chemical compounds encountered.

equilibria. The least-squares solution of these equa- ' '

tions is presented as a model for chemical equilib- Experimental methods

rium in the system under a wide range of conditions.

Symbols and units

Apparatus

" Present address: Los Alamos' Scientific Laboratory, Los Experiments were conducted by enclosing reagent-
Alamos, New Mexico 87545. grade chemicals in sealed noble-metal capsules and
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Appendix 2
Formulation of the Least Square Problem

Table 12 lists eighteen chemical equilibria that have been used to con-
strain the thermochemical quantities for the phases in this system. These
equations can be split into several classes, each having an equation of a
general form. There follows a derivation of each of these general equations
and remarks on any simplifying assumptions that have been made.

Equilibria [2] to [7] represent fluorine hydroxyl exchange between two
solid solution phases, C and D. In equilibrium composition space these
equilibria are represented by tie lines between coexisting solid solution

phases. The basic equation describing such equilbria is given by

[20] Huc F ¥pp T Mgp toHpe

From equation [20] it follews that

[21] B8y + AGpp = MGy, + Gy,

It should be noted that these AG's refer to the species in the solid solution
and not to pure endmembers. AG may be reduced to a more tractable form

through use of an activity term such that

*
[22] AG = AG + RTlna

Referring to a standard state of 1023 K z2nd 1 bar

[23] AG = AG°+ AV°(P - 1) - AS°(T - 1023) + RTlna .

This equation is an approximation assuming AV and AS to be constant over the
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range of pressure and temperature considered. The approximation is useful
because variation AV over the pressure and temperature range of interest is

small and variation for the several species involved in a given equilibria may

be expected to cancel each other to a large degree. The approximation that

Ag? = AS° is adequate because all of the data for these equilibria were collected
within five K of 1023 K.

Combining equations [21] and [23] results in

[24] AQR + AZR(E.— 1) - A§R(£-_ 1023) + Rgln{(chgﬁD)/(gﬁcng)} = 0.

Equilibrium [8] is similar to equilibria [2] through {[7] éxcept that it represents
an exchange equilibrium between a solid solution and the vapor phase. For

equilibrium [8]

[25] Hge T 2Mgp = Mpg T 211Hzo .

Following a development parallel to that leading to equation [24], and noting
that for volatile species

[26] AG = AG®° - AS°(T - 1023) + Rgln(g—T-’g/ -T-’l)

and making the assumption that gg’l = 1 equation [25] becomes

o _ o —- —- o -
[27] AGR = AVSo114,R B = 1)~ 8Sp(Z = 1023)+ RTIn(ap /a, )
+ 2Rg’_ln(_f_Hzo/£HF) = 0.

Note that equation [27] contains the same approximation regarding constant

Azéolids and AS as equation [24]. Equation [27] involves two volatile species

so that the assumption of constant AS is somewhat less satisfactory in equation
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[27], but over five K the error is still trivial.

Equilibria [9] to [17] may be written in the form

[28] Y, HC + y HD + y HE + \)H20H20 -0,

From this it follows that

[29] icse * otap T hetue T h,0ME0 T 0.
f

or

[30] %ictohe T p®Cup t uEtCur T \)HZOAEHZO =0.

In equilibria [9] through [13] all data are within five K of 1023 K, but for
equilibria [14] through [17] data are available at substantially different
temperatures. Consequently it is necessary to include the heat capacity terms

for reactants and products. Thus for solids

T T
[31] AG = AG® + AV®(P - 1) - AS®°(T - 1023) + | ACdT - T (AE/E)d_g’_
j1023 1923
+ RTlpa.
For H20
[32] AG, , = RTIn(£5"0 PyeLod ).
—H50 H)0'—H,0

The rather simple form of equation [32] is due to HZO being one of the re-

*

ference compounds for the system. For this reason AGq 0 = 0 by definition. *

ZT 1 i

Comblning equations [30], [31], and [32] and assuming r-o 1 gives



~0 + - (] - T - Z
[33] AGE Aféollds (B - 1) - asp(r - 1023) + J—Angz_ gj (acp/m)dr
1023 1023

+ : =
RT(\hClna \thna \hElna + \ﬁ201n£H20) 0.

For equilibria [9] through [13], an adequate approximation to equation [33]

may be obtained by deleting the terms containing heat capacities.
Equilibria [18] and [19], like [2] through [7] are exchange equilibria

between solids. The identical compositions of HB and HS, and of FB and FS,

require that two equations be used for each equilibrium. These are

[34] Hue™ Map
and f
[35] Rre = Mpp

Noting that equation [34] implies

[36] AG._ . = AG

and combining this with [31] leads to

T T
° 4 o - _ o _ - _ -
[37] AGg + AVR(P = 1) - ASZ(T - 1023) + 1§§§dz' g,lgigg/gpdg
3

+ RTln(—HD/éHC) = 0.

Expanding equation [35] gives an equation equivalent to [37], but for the

fluoro-endmembers. For both equations the assumption of constant AV was

made.

B

In the above general equations both heat capacity and activity are %

functions of the measurable quantities temperature, pressure, and composi-

tion. Before the least squares problem can be solved it is necessary to



adopt functional forms to approximate these quantities. A suitable expres-

sion for heat capacity is the function
[38] C=a+br+c/r?

proposed by Maier and Kelley (1932).

‘The activity term has been treated as outlined by Thompson (1967). Only
details specific to this study will be given here. It is interesting to note
that although the treatment used here is strictly empirical, the reguiar
symmetric and asymmetric solutions (Thompson, 1967) are identical in functional
form to the zeroth order and quasi-chemical approximations of Guggenheim
(1952), provided that the substituting atoms or atomic groups are
of approximately equal size. Guggenheim's méthod of development of these
mixing models is useful in thaé it provides the reader with some feeling for
the physical significance of ti.e form of the models.

For the solid solution phase C, the relation between composition and

activity is given by

1023,1
+ =
[39] KFCR;;HEFC EHCRElHEHC GEFCRTlREFC + agHCRTlngﬁc + Agex c
P T
N AKex,Cdg-_ A§ex,cdz~'
J 1023

In the absence of evidence to the contrary, Agex has been assumed to equal

zero. (Most of the data presented here are for temperatures near 1023 K and

thus give very poor control on AS .) In addition, AV is assumed to be
—ex —ex

constant for each phase. Thus equation [38] reduces to

1023,1
[40] Xg RTln@FC —HCRE}HEHC aEFCRz}nEFC + a aXyo RTln_;gHC + Agex o

+ Ap1023,1(p = 1),
AZéx,C’ (E- D
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AGL023,1 ang Avl02,1 remain functions of composition and have been ex-
—ex . —ex »
th
pressed as n degree polynomials in composition, e.g.
v 4
[41] AG1023,1 = a.x= .
—ex . i~
._1_=O ol
X-ray measurement of the volumes of the solid phases indicates that Azéi23r1
is zero for all phases except brucite (see Table VI). Even for brucite

only the first three terms of the polynomial are necessary to represent the

volume function adequately. This leads to

» 1023,1 -
[42] Alex,C’” ~ Erctacty,c

where EV c is zero for all phases except brucite.
Vo
A fourth degree polynomial was ased to approximate A§é§23sl, although
it will be seen later that such a complex function is not necessary for most

of the solid solution phases. The result of applying boundary constraints

to the polynomial is

[43] AGliZ3 V= x x2w_  + x 2w+ x2 x2

In equation [43] the W's are equivalent to the W's of Thompson (1967).
(HHC corresponds to the solution of HC in a crystal of predominantly FC.)
EC is the coefficient of the fourth degree term in equation [41]. No theo-

retical significance has been associated with E .

__C
From the abowve it follows that
= . 2 [pr P -
[44] RElnay, = (REInxg. + xpoWWye + 280 Fpg — Hye)
- - 2 -
(L = bxpe ¥ 3%50)Eg + Wy (B = DI

and

P&y



= aRTlnx 2% (W, ~ W,.)

2
[45] RIlnag *pc * %cW¥rc * 22pc e ~ ¥re

C
- (3 by +.3§§C)§c t o DY

The equations expressing the equilibria in Table 12 contains a large
number of constants (AG°'s, AS°'s, Ac's, W's, etc.), which must be evaluated
in order to describe the phase equilibria. In order to reduce the number of
variables to be determined on the basis of least squares, those variables
not well constrained by the phase equilibrium data and which could be esti-
mated from other sources were evaluated prior to seeking a least squares so-
lution. "It is now possible to write equations which express, within the ap-
proximations stated, each of the equilibria in Table 12. The equations
which follow have been expanded and rearranged so that the parameters to be

evaluated all appear in explicit form in the left hand sides of the equa-

R

. . . o o . . .
tions. The exceptions to this are A§FB and A§HS' These quantities remain
embedded in AS°. The data base used to evaluate the right hand sides is

given in Table 11. The equations follow. For equilibria [2] through [7],

o o o _ ApnO ‘22—
[46] AGye * AE Gpe ™ Agp T (xpe ~ 2%pc) e

ZHC Spp ~ 2

e - _ _ _ 2 3
* (xpe = DA = 320y = (2p0 = bxpg + bxpp)Eg

_ 3x2 i} i
+ (2xpyy = 3xpp)Wyy + (1 = xpp) (1 = 3xpp) gy

2 3
+ (2_}_{_F 6x % + 4£F

p ~ °XFp = bvp(1 = B) + ASp(T - 1023)

n’Zp

+-aRg}n{(§FC )}

= XpeXpp) ! (Xgp = XpcXpp

v,C

+ (2 - Dy, - leV,D - 2 )W, )

{
i

&5 ow T



For equilibrium [8],

o - o] - -
[47] AGpg = BGpg + (Bxgg = 2xpo)Wyc + (o = DL - 3xp0)W5,
_ P 3 - opg® - _
(2xpc = bxgpc * 4xpc)Eg 2A§-H20 20Ggp + BV 01546, T B
+ ASS(T -
Sp(r - 1023) + oRTIn{x,. /(1 = x )} + 2RTln(_H20 fup)
+ (P - - :
2 - DA - 208,
For equilibria [8] through [16],
! o
+ -
[48] Lovedsg + 1 Dvgge{ g = Ditye + 21 = xp0)igg
C C#H,0
- (1 - 2 - - orp -
(L - 4x X + 3x )E }] AV® Veolids, R( p) + AgR(g 1023)
T T
- |8cgdr - | (AC,/T)dT - (RTInf, o - RT)  (avlnx,)
1023 1023 2 2 C#H,0

L {E-1)v }
C#HZO_. C FC—V Cc

where the \b are given by equation [28]. Pairs of equations corresponding
to equations [34] and [35] of the form of [48] may be used to express equi-
libria (18] and [19]. It is evident that, provided all fluid species are
treated iﬁ a manner analogous to that for HZO and proper Vo are chosen,
equation [48] will represent all the equilibria considered in Table 12.
The o which appears in some of the above equations is the number of sites
per formula unit upon which mixing is occurring. Using the formula units
given in Table 2, a = 2 for all solid solution phases.

Equations [46], [47], and [48] have been applied to the data listed in
Table 7 and to the data of Crane and Ehlers (1969) and Chernosky (1974) listed

in Table 13. 1In order to utilize equilibrium data involving inter-
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mediate sellaite it has been necessary to estimate the compositions of inter-
mediate sellaite coexisting with periclase, brucite, and sellaite. This has
been done by noting that a bulk composition of MgOHF can be crystallized to

1007 intermediate sellaite while compositions of Mg(OH) d

0.9%1.1 @®
Mg(OH)l.lFO,F‘/ cannot, and that the cell parameters of intermediate sellaite
(Table 1IV) indicate very little solid solution. Intermediate sellaite coex-
isting with periclase or brucite is estimated to have a composition of EFS=
0.49 while the composition of that coexisting with sellaite is estimated to be
Xpg™ 0.51. The estimated standard errors assigned to these quantities are
0.02. Since the data of Crane and Ehlers (1969) for coexisting periclase,
intermediate sellaite, sellaite, and vapor do not include the composition of
the sellaite only equilibrium [14] can be constrained with these data. For
this equilibrium, only the data at 1000 bar were used here since these are
the only data said by the authors to be reversed.

To further constrain the model, several equations can be written which
represent estimates of individual parameters to be evaluated. These equa-
tions along with the sources of the data and their estimated standard errors
are listed in Table 14.

Appendix 3
Solution of the Least Squares Problem

The system of equations being used to describe the experimental data is
highly overdetermined in the sense that there are many more equations than
unknowns. Since, as already remarked, the equations involve measured quan-
tities, it may bc expected that an exact solution to the equations will not
exist. For this reason an approximate solution must be sought. The approx-
imation criterion to be used here is that of least squares.

All the equations to be used to describe this system are linear in the

h :
unknowns. The éF equation may be written in the form
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Where the aii-and bi are constants and the xj are the unknown parameters,

and n is the number of unknowns. A system of m such equations may be writ-

ten in the form : {

[53] Ax = b

where 4 is an m by n matrix containing the a4 b is a column m-vector con-

taining the Qi_and x is a column n-vector containing the IR The least
squares solution is the n-vector x for which the euclidean length of the
vector (dx - b) is a minimum.

If such a solution is found for the set of equations derivedcdirectly
from the data, no account is taken of the varying degree of certainty to
which each of the equations is known. In order to weight the equations ac-

cording to their uncertainties a weight matrix L was applied making the sys-

tem of equations to be solved

[54] Lax=Lb.

The matrix L was derived from an estimate of the covariance matrix geq of

the equations. This was done by computing the Cholesky factorization of

geq to produce the lower triangular matrix F such that

. J
[55]  Coq=EE -

L is thon defined by the relation

[56] n=r"
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The covariance matrix geq was estimated by the relation

; of ; of i
57 ¢ ~
7 i3 LTV, 39, y

In the above relation €3 is the covariance of equations i and j. The fi

are defined by the relation

[58] o= (] aiigj) - b
i

1

The Yy, are the experimentally determined quantities such as mole fraction,
tempefature, pressure, and volume. The 02 are the variances of the Ve
X il

In order to simplify calculation of Q;a the assumption has been made
that only errors in the determination of mole fraction, temperature, and in
the case of buffergd experiments, fluid composition contribute significantly
to the covariances. Further, even the errcrs in temperature measurement
were found to be significant only for equilibria involving a fluid phase.

In order to produce a solution vector that would reproduce the data it
was also necessary to arbitrarily overweight those equations which describe
equilibrium between three solid phases, at least one of which is a solid
solution phase, and the vapor. ‘his was done by reducing o, for the solid
solution phases involved by a factor of five. This has a secondary effect
of making it necessary that the covariances be set to zero between these
equations and all others correlated to them by virtue of composition mea-
surements.

The least squares solution of equation [53] may be written as

(591  x = [cal’ gb

+
where [GA] is the pseudoinverse of GA. The pseudoinversc of a matrix A
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may be obtained from its singular value decomposition (Golub and Reinsch,
1970; Lawson and Hanson, 1974). The singular value decomposition was accom-
plished by use of the University of British Columbia Computing Centre sub-

routine SOLSVD (Streat, 1973). The singular value decomposition yields
T

[60] N1 ey

where if A is a m by n matrix, then U is an m by m orthogonal matrix, V is

an n by n orthogonal matrix and S is an m by n diagonal matrix. éf may be

defined by the relation

+ + T
[61] A =ysu-
+ . . : . + .
where S is an n by m diagonal matrix whose diagonal elements s are given

by

+ _ J1/s, for s;>0
[62] 51~ { 0L for s:=0}

where the s, are the diagonal elements S.

The covariance matrix of the members of the solution vector x has been

estimated as ozﬁ, where the expression

[63] o2 = |lax - b]| ?/(m - n)

is used to evaluate the scale factor o2 and the unscaled covariance matrix

C is defined by

[64] c=uvs s v-.

The correlation matrix may be obtained from the covariance matrix by

the relation
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)
[65] pij oij/oiiojj

— e e

where pij is the correlation coefficient and 053 the covariance for xi and

X..
J

A more detailed account of the computational methods used and several
useful fortran codes may be found in Lawson and Hanson (1974). An introduction
to least squares problems may be found in Bevington (1969). A more rigorous

approach is presented by Plackett (1960).




